SOME MODIFICATIONS TO LIFTING SURFACE THEORY

by
A.I. van de Vooren*

1. Introduction.

The calculation of pressure distributions in subsonic flow by aid of lifting
surface theory is usually performed for a wing, which is symmetrical with
respect to the mid-plane of the aircraft [1,2]. In this case the boundary
conditions are clear; at both tips the pressure vanishes while at the mid-
plane the pressure either vanishes also (for anti-symmetric loading) or is
assumed to have zero derivative in the direction of constant chord fraction
(for symmetric loading). For a swept wing this assumption is not conform
to reality but its consequences are lessened by an artificial backward shift
of the central section, following a proposal by Multhopp [1].

However, there are some configurations where the boundary conditions
are less simple, for instance, a horizontal tailplane with endplates or a
vertical tailplane which carries the stabilizer with elevator (T-tail or
crosstail), Considering in particular the last configuration, the boundary
condition for the vertical tailplane at the position of the horizontal tailplane
gives some difficulty since the latter is no plane of symmetry for the
vertical tailplane and hence, the derivative of the pressure in the direction
of constant fraction of the vertical tailplane chord will not vanish there,

This problem has been considered by Davies [3], who has given a solution
which, however, carriessome elements of arbitrariness in it. By using the
theory of orthogonal functions the present author comes to a solution, which
seems to be more logical and which, moreover, can be obtained for a
greater part by analytical instead of numerical calculations. This procedure
has also certain advantages when calculating the pressure distribution due
to a symmetrical loading for a swept wing near its central section. In that
case the assumption of zero derivative of the pressure in the relevant
direction does not need to be introduced and a potential-theoretical solu-
tion, which is more accurate near the mid-section, can be obtained with
the present method.

By way of example the procedure has been applied to a swept wing, the
same which has been considered by Multhopp [1]. There appeared some
difficulties with regard to the convergence of the numerical solution towards
the exact solution if the number of pivotal points in chordwise direction is
increased. The difficulties are not specific for the present procedure since
they exist at least as seriously in the work of Lashka [2]. Their elimination
can be performed even more easily in the present method, thus leading to
another advantage for this method.

An Algol 60 program for symmetrical loading of a swept wing in in-
compressible flow is available,

2. The choice of the system of ovthogonal functions.

The problem to be considered is the spanwise integration occurring in
lifting surface theory which is concerned with integrals of a.o. the following

type
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This integral must be taken as

lim {"fe ) an o/ dn' - 2 f—i’ﬂ}

e—~0lo (n- T)) e (M- TT)

which means that the function (n -n')'2 should be considered as a distribution
or generalized function [4].

The function f(n) is obtained from a chordwise integration containing the
pressure distribution.

Following Multhopp [1], the integration in (2.1) is performed by first
introducing an interpolation formula

m+1

f(6) = L £(8,) g,(0), | (2.2)

where 0 is some angular coordinate ranging from © = Z at the root (n=0)
to 6=0 at the tip (n=1). Multhopp takes n = cos 8, but” we shall obtain a
different relation. The functions g,(8) are so-called station functions which
are zero at all stations 6=90,, v=1,2,...,m+l except at 8 = 8; where
g,(8) is equal to 1. This shows 1mmed1ately the correctness of (2.2) at
the station points.

Hence

g,(8,) = 0y, (2. 3)

The station functions will now be expanded into a system of orthogonal
functions, which is also analogous to Multhopp's procedure. The problem,
however, is the choice of the orthogonal functions. At the interval 08 <2£
there are four different complete systems of Fourier expansmn possible,

viz. towards the functions
cos(2A+1)8, cos 228, 'sin(22+1)8 and sin 228,

where A =0,1, :

Which of these expansmns is preferable in a particular case depends
upon the boundary conditions for the function f(8), since this function in
its turn must be expanded into the system of station functions, according
to (2.2). At the tip =0 the function f(8) should vanish and thls eliminates
the systems cos(2A+1)8 and cos 228. At the root, 8=x/2, £{8) should not
vanish and this makes the system sin 218 highly 1mpractlca1 Therefore,
the best choice in our case is the system ' :

‘sin(2A+1)8, A=0,1,...

The derivative to 8 at the root 8 = X then vanishes, but due to the relation
which we shall derive between n afid 8, it appears that' the derivative: to
n at the root will be different from =zero.

The orthogonality and, normalizing relation for our system is

/2
2 _/' sin(2a+1)6 sin(2u+1)0 dB=&,,. o (2. 4)

Such an crthogenality relation in the form of an integral can always be
transformed by aid of the theory of orthogonal polynomials [5] into an
orthogonality relation in the form of a summation. This then leads in a
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natural way to both the position of the stations 8  and the coefficients a, , in
the expansions

. sin(2x+1)8,

The procedure to transform (2.4) into a summation orthogonality relation
is as follows.
By putting cos 8=%, we have

sin(2x+1)8 = V1 -x% P, (x%),

2

where Px(xz) is a polynomial in x“ of degree A. It may be noted that

sin(2A+1)8
Py (x%) = '_Lsfﬁ'e—) = Ug (%)

where Uy, (x) are the Chebyshev polynomials of the second kind.
The orthogonality relation becomes

1
4 .
;0_/‘ Vi-x* P (x°) P, (x*)dx = §,, .

In this formula only x® occurs but not x itself.” Therefore it is more logical
to introduce
n = x% = cosze,

which brings the orthogonality relation in the form

1 .
%f \/I%Px(n)P“(n)dn=6M, (2. 5)
0

where now P, (n) is a polynomial in n of degree A.
From the relation

sin(2x+3)8 + sin(2A-1)8 = 2 sin(2A+1)6 cos 26

immediately follows the three-term recurrence relation between the polynomials
Py
>\ ’

Py M) + Py, () = 2(22-1)P, ().
- From the existence of such a recurrence relation follows that the poly-

Eomials P, (1) also satisfy the summation formula of Christoffel-Darboux
5, p.126] )

m ‘ 1 Pha (M) Pp(n,) - Pp(My) Py (1)
T P, (1P, (n,) = , (2.6)
A=0 n_-n,

where 1, and n, are arbitrary values of n. If, however, we take for n, and

n, two different zeroes of P_,, (n) we find
m
Z P(n)PR(n,)=0, (2.7)

A=0
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where Pm-l-l (T)n) = Pm+1 (nv) = O: nn # Ny.

Since
sin(2m + 3)8
Pm+1 (TI) = -—LS—]TIT—)—; n= C0529 (2.8)
the zeroes of P_,, (n) are given by
_ n = T
e, = Smi3 T n=1,2,,..,m+l, O§9§2,

If in (2.6) n, approaches n,, it follows that in the limit
L Px(nn) = %EPr;-Hl (nn)Pm (nn) = Pr'n (nn)Pm+l (nn)} .
Taking again for n, a zero of P, (1), the result is
m 9 1 ,
)\}_:0 PA (nn) T4 1:)m+1 (nn)Pm (nn) .

Using (2. 8) it is found after some reductions that

m
+
T Pf(nn) . 2m+3
A=0 4 sin?@,
or
m
L sin’(2A+1)9, = 2253
A=0

Combining with (2.7), we obtain the orthogonality relation in summation
form

m
3 x}-.:-o sin(2A+1)8, sin(2A+1)6, = & . (2.9)

Comparing this with eq. (2. 3), it is clear that we may write

4

m
g,(8) = 5—5=5 L sin(2A+1), sin(2x+1)8. (2. 10)

A=0

When we would perform this same procedure for the system sin 228
(corresponding to vanishing pressure at both ends) we would obtain the
same result for g, (6) as in [1] although Multhopp came to it in a more
intuitive way.

We identify n with the spanwise coordinate n used in (2.1). The stations
n, are given by

1

- 2 — _
n, = cos” 6, Sn—mﬁ, n=1,2,...,m+l (2.11)

It is seen from table 1 that the density of the stations is largest near
the root and near the tip. This agrees with the general requirement in
approximation theory, that one always needs a larger density of points
near the ends of the interval.
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TABLE 1. Position of stations for m=7

n 1 2 3 4 5 6 7 8

h 0.9662 0.8695 0.7229 0.5461 0.3632 0,1987 0.0749 0.0085

It may be remarked that Davies [3] uses as orthogonality relation in-
stead of (2.5)
1
6[ V1-n P, ()P, (n)dn = 5,,,
which is satisfied by certain hypergeometric functions. Davies then does
not write the station functions g (1) as series of hypergeometric function,
but he derives the relation

Pm+1(n) 1-7
g,(n) = , (2.12)

d 1-~n
(n-1,) {5 Pt (Mo |70

where n, are the zeroes of P, (n). _

In our case the same relation (2.12) holds but with n = cos?8, n, given
by eq.(2.11) and P,; (n) given by eq.(2.8). This last result may be derived
by performing the summation in (2,10) by aid of (2.6), which leads to

sin(2m+1)6, sin(2m+ 3)6

g,(8) =
! cos?® - c0529n 2m + 3

and which can be identified with eq.(2.12).

3. The quadvatuve formulae fov the spanwise integvation.

A number of spanwise integrals, of which (2.1) gives an example, occur
and these will be evaluated by aid of the interpolation formula (2.2). The
results then are obtained in the form of linear combinations of the ordinates
f(n,). The coefficients depend upon the station 7, for which most of the
integrals have to be evaluated. These stations are the same stations as
used for the interpolation. They are defined by eq.(2.11)., Then

1 ) m+1
T an = - E b))
o (ny -7 =
' m+l
1) g =L e, f(n) > v=1,2,...,mtl (3.1)
n, -0’ n=l
m+l

Pag
=
-
]
=
<
]
J—
Q.
:—
n

L ocpfng) )

Z d,f(n,). ' (3.2)

n=1

h
—~
=
joR
=
1

0
1
0
fl m+1
0

There exists also an interference with the surface at the other side of
the root section n=0. It will now be assumed that the ''semi-spans'' of both
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sides of the lifting surface are equal and that n=0is a symmetry plane.
It would be only a matter of simple arithmetics to extend the following
theory to the case of different "'semi-spans', but it is thought that this
makes no sense if the vertical plane at the root section n=0 is not at the
same time introduced as boundary condition. This, however, would involve
the whole interference problem of a cross-tail with formulae which are
much more complicated but give no deeper insight. Therefore, we shall
restrict ourselves in the following to the investigations of a swept-wing
for which the present procedure has also advantages., The left wing gives
rise to the following integrals

0 , 2m+2 )
f .i(_rl_)__z dn' = - L by, f(ny)
g (ny -n') P

0 2m+2
f f(n,) dn' = E evnf(nn) > V=1’23"-:m+1 l) (3' 3)
A n, -7 n=m+2

0 2m+2

1 1 T =

.'1f f(n')n|ny -n'ldn' = T c, f(n) )

The sections n;l with n from m+2 to 2m+2 are given by

- 2 = n_- =
N emel - ~ COS 91‘1’ en = m T, n=1,2,...,m+1, (3.4)

For v=m+2,...,2m+2 the formulae are

' 1
f(Tl') _ m+
f (—7’1—77')2 o= nEl B, o1, nemer H0715)
0 v "
0 ! 2m+2
1 (Tl '7')')2 n=m+2 p~m-1, n-m-1 0
- v

with obvious results for the other formulae,

The minus sign in the formulae with the coefficients b, has been added
in order to keep the same definition for these coefficients as in [2]. This
notation differs from that in [1] in the sign of b, if vin; v,n=1,2,...,m+l.

By substitution of egs.(2.2), (2.10) and (2.11) in the 1ntegrals, it is

found that for v,n=1,2,...,m+l \
4 0m ™2 sin(2A+1)8' sin 20’
bvn = —m )\);O s1n(2k+ 1)6nf 5 PG de’
= o (cos”8, - cos”8')
_ 4 mo /2 gin(2A+1)6' sin 26"
€0 " TmT3 )\)50 sin(2A+ 1)6n-¢‘ - — de’
o cos 6, - cos“0
4 m /2
o = T3 EO sin(21+1)8, [ sin(2X+1)8' sin26' In|cos® 8, -cos?0'| 46’
A=
0
/2
4 m . . .
dy = 5573 Z sin(2A+ 1)6nf sin(2A+1)6' sin 20' dO'. /
=0 0 (3.5)

1) In the case of different "semi-spans”, 7,-7' would have to be replaced by n,-3n', where § denotes the
ratio of the semi-span of the left to that of the right surface.
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Expressions for by,,, ey, and c,; if n=m+2,.,.,2m+2 are obtained by
replacement of cos?8,- cos?8' by cos?8, + cos?8',
Further reduction of the expressions (3.5) leads to

b S, r)II]) sin(2x+1)8, ('1))\ —(2k+-1)1)\ \
vn 2m+3 5 coszev
4 mo

€ = TS Eo sin(2A+1)8, {I, | - I}

s £, U (s~ ) o cost
Con T TR T3 )\E:O s1n(2k+1)8n£ s—\o%Ts " Zx-l) In cos?®8, +p (3.6)

N S 1
* a0 e * gy (ao Do)

__._.2__ m N _ A -—1_ _ 1 %

d, = o+ 3 >\Eo sin(2x+1)8, {( 1) (2k+3 —2x-_1> ) )

For n=m+2,...,2m+2 the results are

b ==t T sin@A+1)8 GO a1y
vn - 2m+3 35 no4- 2 A
cos~8,
2 rg 2 +1)8_1J
e = = sin + -J
v T 2m+3 2 ( )85 {Jn1 }\+1} 5.7
_ 4 0m {(—1)*( 11 ) In cos?8,-
Con T am+3 5 S DS a3 oo
1 1 '
“aeaon U e) T g sy Uadae ))I'
while the formula for dp is the same as for n=1,2,..,,m+1,
The formulae for I, and J, are as follows
" 21 +1)6' 21 +1)0'
I, = cos( ) o', J, = cos( ) ae' . (3.8)
0 cos?@, - cos?® 0  cos?@, + cos?@

The integral I,, which can also be written as

m
_ cos(A+3)y!" ; -
IX - ﬁ cos w'ﬂ - COS (ljl dw > wl} - 281”

differs from the well-known Glauert's integral [6, p.173] by the replace-
ment of X by A + 3 with X integer. The integrals I, and J, are evaluated
by putting

tan 6, =z, and tan ' = z'

with the result that

1 1 -sin 8, 1 1+Cosh &,

Io = gin 08, In cos 6, ° Jo = Cosh E, In Sinh E, *

(3.9)

where Sinh E, = cos 8,,,
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Since I_; =1, and J_, =J,, the other I, and J, are determined by the re-
currence relations (A integer)

4 1
Lt 1= - 5o (DM + 21, cos 26,
(3.10)
4
Jwitda = 37 (-D* - 23, Cosh 2, .

It can be shown from the characteristic equation, that the recurrence
relation for I, is stable, but that the relation for J, is unstable. How the
latter difficulty is to be circumvented, will be dealt with in Sec.5.

4. The integrval equation fov the pressurve diffevence.

According to ref. [1] and [2], the integral equation for the dimensionless
pressure difference

pl_pu

Ac, =
’ LUl

is in incompressible flow

' x(y) Ac,(x',y') X - X'
a%,y) = - gr f — {1+ = 2}dx'dy'. (4.1)
SheN -y Vix-x)? +(y -3

x and x' are coordinates in chordwise direction, y and y' in spanwise
direction, s is the semi-span, x(y') denotes the x-coordinate of the leading
edge, x(y') that of the trailing edge, p; is the pressure at the lower side,
p, that at the upper side, p is the air density and U the speed.

The following symbols will also be used

x'=x(y")
Uy') = x(y") - x(y")s, X' 5 —— ,
Ly")
(4. 2)
x = x(y") X =%(y) y-y'
X=X, = =,
L(y") Uy) Hy)

The quantities X' and X, vary between 0 and 1. This does not hold for X.
For the pressure difference in chordwise direction we assume a Birnbaum
series with coefficients depending on the spanwise coordinate. Hence

Ac, (x',3') = 25 ra (n") h (X"
P ’y 1(7’)!) =0 r T 3
where h (X') =cot £, h (X')=sinre if r3x1, (4. 3)
X! = l;cz_g_s__ﬁ, nx._.y(/s’ 1(77‘)=1(y’).

After some reductions which are analogous to those performed in ref.[ 2],
and which are also described in more detail in ref. [7], the integral equation
can be written in the form
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R (la; (M) (8,mn") 1
a(x,y) = - 2_1ﬂ' L gj - dn'+1fg (€, n)f ar(nl)1n|n'n'|dn')§;\
=0 (-1 n -n ) 1
1
X -X' ,
where fy 5oy = [0 {1+ et e >
4.4
s? dh; ( )
¥ 2 (‘“‘) (m=n"y 1njn-n'l,
{1(77)} dX X=X,
s® dhr> /
for(8,7) =~ — s & =X(y"), = y/s.
ST <dX T J

For the in:cegration over the left surface (-1 < n' < 0), 1(n) has to_be
replaced by 1(n) in the formulae for fj; (§,n,n') and fg (€, n), where 1(n)
denotes the imaginary chord obtained at the section n when the left wing
is analytically continued up to this section (see ref.[7] for details).

5. Solution of the integral equation.

As we have restricted the freedom of Acp(x',y') by approximating it by
the series of R+l terms given in eq.(4.3), it is only possible to satisfy -
eq.(4.4) for the R+1 values of x, defined by

X =x1+1§

) (1-cosﬂi‘—), #4=1,2,...,R+l. (5.1)

2R+3

Similarly, since the functions a,(n') will be approximated by interpolation
formulae of the type given by (2.2), corresponding to a Fourier series of
m+1 terms according to (2.10), the integral equation (4.4) can be satisfied
only for m+1 values of y at each semi-wing, These values of y are given
by eq.(2.11) for the right semi-wing and by eq. (3. 4) for the left semi- wing.

In this way there have been defined (m+1)(R+1) pivotal points (x,,y,) at
which eq. (4.4) will be satisfied, The integral equation is then r'epIu ced by
the set of algebraic equations

1 R 2m+2
a(xﬂ’yv) =—2'7 rEO n)gl {bvnflr(sp’nv’nn) -Cm f2r(Ep-‘nv)} ar(n)

(5.2)
u=12,...,R+1; wv=12,...,m+l,

The quantities f;(§,, n,, n,) are evaluated for r » 1 after integration by
parts, see [71.

In the calculation of the coefficients b,;, and c¢,, for n=m+2,...,2m+2
there is a complication due to the instability in the evaluation by recurrence
of the quantities J,. Since the characteristic equation of the secondeq, (3. 10)
is

t2+ 2t Cosh 2§, +1 =

it follows that the dominant term in the error increases as (—l)pezg"P , Where
p is the number of times the recurrence relation has been applied, Since
the accuracy of the Telefunken TR4, on which the calculations have been
performed, is 11 digits in floating form, a loss of 7 digits was considered
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to be the limit which could be accepted. Hence, the recurrence relation
is only used if

B T (5. 3)

and then b, and c,, follow from eq.(3.7). Eq.(5.3) will not be satisfied
if either &, or m is large enough., &, large implies 6, small and n, far
from the section n=0, which means that the singularity at n'=n, is far
outside the interval of integration. m large means that a large number of
points is used for the spanwise integration. In both cases it is admitted
to neglect the singularity outside the interval of integration and to use
eq.(3.2) for the integration. Then ‘

dg
bvn = - _—_é 3 cvn = dnlnlnv _nnl’ n=m+2”"’2m+2
(ny 'nn)

where d, is given by eq. (3. 6).

Eq. (5. 2) has been solved for a,(n,) and from these results the sectional
lift and moment as well as the total lift and centre of pressure were cal-
culated with formulae given in [7]. However, it appeared that convergence
with increasing m was rather slow, especially if R was 2 or more., This
is due to the inaccuracy of the spanwise integration. The results for the
total lift of a flat wing with @=1 and of the resultant center of pressure
of that wing are given in table 2 for various m and R, The wing is the
same as that considered by Multhopp [1, page 67].

TABLE 2. Results obtained from eq.(5.2)

o
Slope of life curve, -—L.

oo
4] 8 12 16 20 24
R+1!
1 3.2589 | 3.2639 | 3.2647 | 3.2650 | 3.2652
2 3.3272 | 3.2067 | 8.2914 | 8.2926 | 8.2940
3 3.3428 | 3.3318 3.3137 3.3020 | 3.2965
4 3.3094 | 3.3242 | 3.3242 | 3.3182

Position of the resultant centre of pressure given as fraction of the root

chord.
o+l 8 12 16 20 24
R+1{
2 0.8267 0.8305 0.8301 0.8294 0.8290
3 0.8176 0.8239 0.82178 0.8295 0.8299
4 0.8184 0.8204 0.8230 0.8254

The slow convergence is not specific for the integration rules used in
this paper, since they have also been encountered at the NLR in Amster-
dam by Zandbergen and his group, using the Multhopp distribution of pivotal
points in spanwise direction. They also occur for non-swept wings including
the rectangular wing.

In order to overcome these difficulties it has. been proposed by Zand-
bergen [8] to expand fi, (E,n,n') near n'=n in the Taylor series



Some modifications to lifting surface theory 97

af;
f.(E.n,n")y = £, (E,n,M) + (' -n) aT.r(E,n,n) + Ry, (5.,m,1n"), (5.4)

where Ry (E,7n,n') contains a factor (n'—n)z.

assumes the form

R 1 ar(n') of 1-(5377,77') 1 8.1-(77')
a(E,n)= g5 {fn(ﬁ»’m) § d”'+<_l—_> ! "
n"=n

The integral equation then

r=0

1 (nn')? o' 1n'-n
lar(T]')er(E:Tlan') 1 '
v f an' + 1 (8,0) [ agnin|n-n|an{.  (5.5)
-1 (n-n')? -1

Accepting the expansion of a,(n') in a Fourier series of m+1 terms, the
integrals

1 ag(n) b an')

1
—_— dn' and [ afn')laln-n'|dn’
1 (n-n")? 1 n'-n 1

can be calculated exactly., The remaining integral has an integrand which
is finite for n'=n unless n=0. Zandbergen suggested to calculate this integral
by aid of an increased number of points, In the present investigation this
integral has been calculated by aid of eq.(3.2). It is thought that the error
thus made in the evaluation of the integral is of the same order as that
made by restricting the Fourier series of a;(n') to m+1 terms,

The main advantage of eq. (5.5) over eq. (4. 4) can be explained as follows.
The accuracy of the first formula of eq.(3.1) is not too good (unless f(n')
consists of a m+l term Fourier series, in which case it is exact), since
b,, is rather large positive while b, ,; and b, ,,; are negative in such a
way that these three terms canecel each other for an important part. There-
fore, the factor fq.(§,7,1') occurring in eq.(4.4) after the integralsign
gives errors, additional to and dominating those of the corresponding term
in eq.(5.5).

The set of algebraic equations used is

1 R 2m+2 aflr(gg:nvsny)
a(gﬂ’nv)zi? Eo -Z—-:l {an F1rGuomyan,) + ey, -
T I anl n'=n
. v
Ry (B, Mysny)
4, T e, (5, nv)E a(n,). (5. 6)
(nv_nn)

The coefficients b,;, cy,,, e,; and d, are obtained from egs.(3.6) and
(3.7), but (3.7) again with the restriction that if (5. 3) is not satisfied,
we have instead

dp dn
bvn s - _——2 ’ €yn 7 2 Cun = dn1n|nv_nn|’ n=m+2,..., 2m+2.
(nv'nn) nu_nn

The results obtained from eq.(5.6) for the total lift and centre of pres-
sure of the same wing as considered before, are given in table 3. By
comparison with table 2 it is seen that the convergence with increasing
m is much better when using eq. (5. 6).
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TABLE 3. Final, more accurate, results obtained from eq.(5.86)

[o!
Slope of lift curve, _CI.“_

da
m+1
Re 1) 8 12 16 20 24
1 3.2661 3.2658 3.2657 3.2656 3. 2656
2 3.3000 3.2967 3.2958 3.2957 3.2956
3 3.2856 3.2977 3.2987 3.29177 3.2969
4 3.2689 3.2863 3.2946 3.29717

Position of the resultant centre of pressure given as fraction of the root

chord.
I+l 8 12 16 20 24
R+1l
2 0.8273 | 0.8284 | 0.8286 0.8286 0.8286
3 0.8277 0.8271 0.8277 0.8282 | 0.8285
0.8310 0.8283 0.8275 0.8275

Results obtained by Muithopp [1], 15 stations on total span

1 chordwise station dcy/da = 3,232
2 chordwise stations ocj /dc = 3,275, while the centre of pressure is at
0.829 of the root chord.

Another property of the result is that increase of R always should be
accompanied by increase of m if an improvement of the results is aimed
at. The expansion of a;(n') in a series of m+1 terms becomes apparently
more difficult for increasing r. This can be made plausible for a rect-
angular wing where the higher terms in the Birnbaum series are more
concentrated near the tips.

For the details of the calculations the reader is referred to [7]

Finally, it may be mentioned that the evaluation of

Ry (8,51, 51y)

(1, -1p)°

for ny=n,, occurring in eq.(5.6), is only possible if there are no kinks
in the leading or trailing edge at any of the spanwise sections 7n,. Since
in the present procedure all integrations are performed separately over
both semi-wings, the middle section where such a kink often occurs, is
not one of the sections n,. This is another advantage over the classical
methods of [1] and [2], where the introduction of the Taylor series (5.4)
gives complications.

6. Resulls.

Numerical computations have been performed for a number of flat wings.
We present here the results for a wing, which has also been investigated
by Multhopp [1]. It is shown in fig., 1. Leading and trailing edges are
straight for each semi-wing, The angle of sweep of the leading edge is 45°,
The aspect ratio is 4. The wing is tapered with a root chord 1(0) = 0.7 s
and a tip chord 1(1) = 0.3 s.
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Fig.1. Wing planform and positions of center of pressure.

The number of pivotal points in spanwise direction varied from m+1=8
to 24, while that in chordwise direction varied from R+1=1 to 5. These
numbers are only limited by the number of fast memory cells available in
the computer. The computer used was the Telefunken TR4 of the University
of Groningen.

There is an Algol 60 program available, see [7], which calculates and
prints the following quantities for a symmetrically loaded wing.

(i) the spanwise sections n,,v=1,2,...,m+l.

(ii) the functions a (n,), r=0,1,...,R; v=1,2,,,.,m+1,
(iii) the spanwise lift distribution

(iv) the position of the sectional centre of pressure

(v) the lift coefficient of the whole wing

(vi) the position of the resultant centre of pressure

(vii) the spanwise distribution of the induced drag

(viii) the total induced drag obtained by integration of (vii)
(ix) the total induced drag obtained from the wake.

The spanwise lift distribution and the spanwise distribution of induced
drag have been given in figs.2 and 3, respectively. The positions of the
sectional centers of pressure and of the resultant center of pressure have
been added in fig.1l. Finally, fig.4 shows the functions a,(n) for the case
of m+1=20 spanwise points and R+1=4 chordwise points,

It is necessary .that in the middle section of a swept wing a,(n) decreases
to zero in order to keep the downwash finite at the foremost point of the
wing. The pressure in the middle section then is due to the components
a;(M), ag(n), etc. The quick change of these components is difficult to
grasp unless m and R are taken rather large and this is one of the reasons
for the slow convergence of the components a;(n) when m and R are in-
creased, Fig,4 is only valid for the number of pivotal points mentioned,
but an analogous figure for other numbers of points would be only slightly
different.

The decrease of a,(n) in the middle section of a swept wing implies the
vanishing of the section force there. Hence, the sectional induced drag is
large near the middle suction and even becomes negative for the outer
sections of a swept wing (fig. 3).
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Fig.3. Spanwise distribution of induced drag.




Some modifications to lifting surface theory 101

04+

Fig.4. The functions ay(n); m+1=20; R+1=4,
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