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1. Introduction. 

T h e  c a l c u l a t i o n  of p r e s s u r e  d i s t r i b u t i o n s  in s u b s o n i c  f low b y  a id  of l i f t i n g  
s u r f a c e  t h e o r y  i s  u s u a l l y  p e r f o r m e d  f o r  a wing ,  w h i c h  is  s y m m e t r i c a l  w i th  
r e s p e c t  to the  m i d - p l a n e  of the  a i r c r a f t  [1,  2 ] .  In  th i s  c a s e  the b o u n d a r y  
c o n d i t i o n s  a r e  c l e a r ;  a t  b o t h  t i p s  the  p r e s s u r e  v a n i s h e s  wh i l e  a t  the m i d -  
p l a n e  the  p r e s s u r e  e i t h e r  v a n i s h e s  a l s o  ( f o r  a n t i - s y m m e t r i c  l oad ing )  o r  i s  
a s s u m e d  to h a v e  z e r o  d e r i v a t i v e  in  the d i r e c t i o n  of c o n s t a n t  c h o r d  f r a c t i o n  
( fo r  s y m m e t r i c  l o a d i n g ) .  F o r  a s w e p t  w i n g  th i s  a s s u m p t i o n  is  not  c o n f o r m  
to r e a l i t y  but  i t s  c o n s e q u e n c e s  a r e  l e s s e n e d  b y  an  a r t i f i c i a l  b a c k w a r d  sh i f t  
of  the  c e n t r a l  s e c t i o n ,  f o l l o w i n g  a p r o p o s a l  b y  M u l t h o p p  [ 1] .  

H o w e v e r ,  t h e r e  a r e  s o m e  c o n f i g u r a t i o n s  w h e r e  the  b o u n d a r y  c o n d i t i o n s  
a r e  l e s s  s i m p l e ,  f o r  i n s t a n c e ,  a h o r i z o n t a l  t a i l p l a n e  wi th  e n d p i a t e s  o r  a 
v e r t i c a l  t a i l p l a n e  w h i c h  c a r r i e s  the  s t a b i l i z e r  w i th  e l e v a t o r  ( T - t a i l  o r  
c r o s s t a i l ) .  C o n s i d e r i n g  in p a r t i c u l a r  the  l a s t  c o n f i g u r a t i o n ,  the b o u n d a r y  
c o n d i t i o n  f o r  the v e r t i c a l  t a i l p l a n e  a t  the  p o s i t i o n  of the  h o r i z o n t a l  t a i l p l a n e  
g i v e s  s o m e  d i f f i c u l t y  s i n c e  the  l a t t e r  i s  no p l a n e  of s y m m e t r y  f o r  the 
v e r t i c a l  t a i l p l a n e  and  h e n c e ,  the d e r i v a t i v e  of the p r e s s u r e  in the d i r e c t i o n  
of c o n s t a n t  f r a c t i o n  of the v e r t i c a l  t a i l p l a n e  c h o r d  wi l l  not  v a n i s h  t h e r e .  

T h i s  p r o b l e m h a s  b e e n  c o n s i d e r e d  b y  D a v i e s  [ 3 ] ,  who  h a s  g i v e n  a s o l u t i o n  
which ,  h o w e v e r ,  c a r r i e s  s o m e  e l e m e n t s  of a r b i t r a r i n e s s  in i t .  By u s i n g  the 
t h e o r y  of o r t h o g o n a i  f u n c t i o n s  the p r e s e n t  a u t h o r  c o m e s  to a s o l u t i o n ,  w h i c h  
s e e m s  to be  m o r e  l o g i c a l  and wh i ch ,  m o r e o v e r ,  c a n  be o b t a i n e d  f o r  a 
g r e a t e r  p a r t  b y  a n a l y t i c a l  i n s t e a d  of n u m e r i c a l  c a l c u l a t i o n s .  T h i s  p r o c e d u r e  
h a s  a l s o  c e r t a i n  a d v a n t a g e s  when  c a l c u l a t i n g  the  p r e s s u r e  d i s t r i b u t i o n  due 
to a s y m m e t r i c a l  l o a d i n g  f o r  a s w e p t  w i n g  n e a r  i t s  c e n t r a l  s e c t i o n .  In tha t  
c a s e  the a s s u m p t i o n  of z e r o  d e r i v a t i v e  of the p r e s s u r e  in the r e l e v a n t  
d i r e c t i o n  d o e s  not  n e e d  to be  i n t r o d u c e d  and  a p o t e n t i a l - t h e o r e t i c a l  s o l u -  
t ion ,  w h i c h  is  m o r e  a c c u r a t e  n e a r  the  m i d - s e c t i o n ,  c a n  be  o b t a i n e d  w i th  
the  p r e s e n t  m e t h o d .  

By w a y  of e x a m p l e  the p r o c e d u r e  h a s  b e e n  a p p l i e d  to a s w e p t  wing ,  the 
s a m e  w h i c h  h a s  b e e n  c o n s i d e r e d  b y  M u l t h o p p  [ 1 ] .  T h e r e  a p p e a r e d  s o m e  
d i f f i c u l t i e s  wi th  r e g a r d  to the c o n v e r g e n c e  of the  n u m e r i c a l  s o l u t i o n  t o w a r d s  
the e x a c t  s o l u t i o n  if  the  n u m b e r  of  p i v o t a l  p o i n t s  in c h o r d w i s e  d i r e c t i o n  i s  
i n c r e a s e d .  T h e  d i f f i c u l t i e s  a r e  not  s p e c i f i c  f o r  the p r e s e n t  p r o c e d u r e  s i n c e  
t h e y  e x i s t  a t  l e a s t  a s  s e r i o u s l y  in  the w o r k  of L a s h k a  [ 2 ]. T h e i r  e l i m i n a t i o n  
c a n  be  p e r f o r m e d  e v e n  m o r e  e a s i l y  in the p r e s e n t  m e t h o d ,  thus  l e a d i n g  to 
a n o t h e r  a d v a n t a g e  f o r  th i s  m e t h o d .  

An A l g o l  60 p r o g r a m  f o r  s y m m e t r i c a l  l o a d i n g  of a s w e p t  w i n g  in i n -  
c o m p r e s s i b l e  f low is  a v a i I a b l e .  

2. The choice of the system of orthogonal functions. 

The problem to be considered is the spanwise integration occurring in 
lifting surface theory which is concerned with integrals of a.o. the following 
type 

1 f(~,) d~ ' .  (i) 
f (n- 0,)2 

O 
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This integral must be taken as 

l i m ( )  -~ f@l') 1 ~ } d~' + j" f( '~') f ) 
r (~_~,)2 d~' - 2 -- , ~+~ (U_~,)2 

which means that the function (r/-~') -2 should be considered as a distribution 
or generalized function [4]. 

The function f(N)is obtained from a chordwise integration containing the 
pressure distribution. 

Following Multhopp [I], the integration in (2. I) is performed by first 
introducing an interpolation formula 

m+l 
f(@) = ~ f(@n) gn(9), (2.2) 

n=l 

where @ is some angular coordinate ranging from @ = 2 at the root (N = 0) 
to @ =0 at the tip (~= i). Multhopp takes N = cos @, but we shall obtain a 
different relation. The functions gn(@) are so-called station functions which 
are zero at all stations @ = @~, y = 1,2,...,m+l except at @ = @n Where 
gn(9) is equal to i. This shows immediately the correctness of (2.2) at 
the station points. 

Hence 

gn(Ov) : 5nv. (2.3) 

The station functions Will now be expanded into a system of orthogonal 
functions, which is also analogous to Multhopp's procedure. The problem, 

however, is the choice of the orthogonal functions. At the interval 0 ~ @ ~ ~- 

there are four different complete systems of Fourier expansion possible, 
viz. towards the functions 

cos(2X+l)O, cos 2XO, sin(2k+l)O and sin 2XO, 

where k= 0, I ..... 
Which of these expansions is preferable in a particular case depends 

upon the boundary conditions for the function f(O), since this function in 
its turn must be expanded into t+he system of station functions, according 
to (2.2). At the tip O = 0 the function f(@) should vanish and this' elimin@tes 
the systems cos(2k+l)O and cos 2X@. At the root, 0=~/2, f(O) should not 
vanish and this makes the system sin 2k@ highly impractical. Th'erefore, 
the best choice in Our case is the system 

' sin(2k+ i)@, k = 0, i,.. 
l' 

/T 
The derivative to @ at the root @ = ~ then vamshes, btit due to th'e relaiion 

which we shall derive between r7 and @, it appears that" the derivaiiv@ ~ to 
at the root will be different from zero. 
The orthogonality and: normalizi+ng relation for our system is 

~r/2 
4 . 7" sin(2x+ I)@ sin(2~+ i)@ d@ : +~.  (2.4) 

0 

Such an orthogonality relation in the form of an integral can always be 
transformed by aid of the theory of orthogonal polynomials [ 5] into an 
orthogonality relation in the form of a summation. This then leads in a 
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natural way to both the position of the stations 8 n and the coefficients ax, n in 
the expansions 

gn(O) = ~ s i n ( 2 k + l ) O  k=O a X, n 

T h e  p r o c e d u r e  to t r a n s f o r m  (2 .4)  in to  a s u m m a t i o n  o r t h o g o n a l i t y  r e l a t i o n  
is  as  f o l l o w s .  

By pu t t i ng  c o s  @=k, we have  

s i n ( 2X+l )O  = V/I-x 2 P x ( x 2 ) ,  

w h e r e  P x ( x  2) is  a p o l y n o m i a l  in x 2 of d e g r e e  k. I t  m a y  be no ted  tha t  

Px(x2)  = s i n ( 2 k + l ) @  
.... s i n  8 = U2x(x ) ,  

where U2x (x) are the Chebyshev polynomials of the second kind. 
The orthogonality relation becomes 

4f - PX (x2) P• (x2) dx = 6ka " 
0 

In this formula only x 2 occurs but not x itself. Therefore it is more logical 
to introduce 

r I = X 2 = COS20, 

which  b r i n g s  the o r t h o g o n a l i t y  r e l a t i o n  in the f o r m  

2 ? ~l~____qU PX (U) P~ (~)du = 6~,  
0 

(2.5) 

w h e r e  now Px(rT) is  a p o l y n o m i a l  in r/ of d e g r e e  k. 
F r o m  the r e l a t i o n  

s i n ( 2k+3)O  + s i n ( 2 X - 1 ) O  = 2 s i n ( 2 k + l ) O  co s  20 

immediately follows the three-term recurrence relation between the polynomials 

PX (~7), 

Px+l (r~) + Px-1 (~) = 2(2) t -  1) Px (r/). 

F r o m  the e x i s t e n c e  of such  a r e c u r r e n c e  r e l a t i o n  fo l lows  tha t  the p o l y -  
n o m i a l s  Px(rT) a l so  s a t i s f y  the s u m m a t i o n  f o r m u l a  of C h r i s t o f f e l - D a r b o u x  
[5, p. 126] 

m 
_ 1 

B px(~n)px(rTv) - 
X=O rl n .- r/v 

w h e r e  ~Tn and rTv a r e  a r b i t r a r y  v a l u e s  of r/. If,  h o w e v e r ,  
~ two d i f f e r e n t  z e r o e s  of Pm+l (~) we f ind 

m 

E Px (r~n) PX (r/,,,) = O, 
k=o 

Pm+l (r/n) Pm(Uv) - Pm(Un) Pm+l (N,,) 
(2.6) 

we take for r~ n and 

(2.7) 
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w h e r e  Pm+l(rTn) = P m + l ( n v ) = O ,  ~n ~ nv, 
Since 

s i n ( 2 m  + 3)@ 
Pm+l (r]) = s i n  @ ; r7 = c o s  2 @ ( 2 . 8 )  

t h e  z e r o e s  o f  Pm+l (r}) a r e  g i v e n  b y  

n ~" 
On = 2m+3 ~ n = l , 2  . . . . .  m + l ,  0~<O{~. 

If in (2.6) r~ v approaches r]n, it follows that in the limit 

m 
p 2 ( ~ n )  

k=0 
= �88 [Pm+l (Un) Pm (Un) - Pl" (r/n) Pm+l (~Tn)}" 

Taking again for r7 n a zero of Pm+l (~), the result is 

m 

k=0 
= {- Pm+l (tin) Pm (r/n)" 

Using (2.8) it is found after some reductions that 

m 2 m + 3  
,g P ; ~ ( r / n ) =  

x=o 4 s i n  2 0 n 

or 

ill 
sin2(2k+l)@n_ 2m+3 

x=0 4 

Combining with (2.7), we obtain the orthogonality relation in summation 
form 

4 m 
s sin(2X+l)@ nsin(2k+l)@ v = 6nv. (2.9) 

2m+3 x=0 

Comparing this with eq. (2.3), it is clear that we may write 

4 m 
gn (o) - 2m+3 x=0E sin(2X+l)O n sin(2X+l)O. (2.10) 

When we would perform this same procedure for the system sin 2X@ 
(corresponding to vanishing pressure at both ends) we would obtain the 
same result for gn(@) as in [I] although Multhopp came to it in a more 
intuitive way. 

We identify ~ with the spanwise coordinate ~ used in (2. i). The stations 
~n are given by 

~n = c~ @n, @n 2m+3 z~' n=l,2 ..... m+l (2.11) 

It is seen from table 1 that the density of the stations is largest near 
the root and near the tip. This agrees with the general requirement in 
approximation theory, that one always needs a larger density of points 
near the ends of the interval. 
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TABLE 1. Position of stations for m=7 

n I 2 3 4 5 6 7 8 

~n 0.9662 0.8695 0.7229 0.5461 0.3632 0.1987 0.0749 0.0085 

I t  m a y  be  r e m a r k e d  tha t  D a v i e s  [ 3 ]  u s e s  a s  o r t h o g o n a l i t y  r e l a t i o n  i n -  
s t e a d  of (2 .5 )  

1 

f ~/I - r~ Px (rT) P~ (~)dr7 = 6x~, 
0 

w h i c h  is  s a t i s f i e d  by  e e r t a i n  h y p e r g e o m e t r i c  f u n c t i o n s .  D a v i e s  t hen  d o e s  
not  w r i t e  the  s t a t i o n  f u n c t i o n s  gn(U) a s  s e r i e s  of h y p e r g e o m e t r i c  func t ion ,  
but  he d e r i v e s  the r e l a t i o n  

gn(r}) : -- , (2.12) 
d } - U n 

(r7 - r~n) [~-~ Pm+l (r/) ~= '  

w h e r e  fin a r e  the  z e r o e s  of  Pm+i (rT), 
In o u r  c a s e  the  s a m e  r e l a t i o n  (2 .12)  h o l d s  but  wi th  r7 = c o s  20, Un g i v e n  

b y  eq. (2. 11) and Pm+l (rT) g iven  b y  eq.  ( 2 . 8 ) .  T h i s  l a s t  r e s u l t  m a y  be d e r i v e d  
b y  p e r f o r m i n g  the s u m m a t i o n  in (2 .10)  b y  a id  of ( 2 . 6 ) ,  wh ich  l e a d s  to 

sin(2m + I)9 n sin(2m + 3)@ 

g n ( O )  = 
cos 28 - cos 20 n 2m+3 

and wh ich  c a n  be  i d e n t i f i e d  wi th  eq.  ( 2 . 12 ) .  

3. The quadrature formulae for the spanwise integration. 

A n u m b e r  of s p a n w i s e  i n t e g r a l s ,  of  w h i c h  (2 .1 )  g i v e s  an e x a m p l e ,  o c c u r  
and  t h e s e  wi l l  be  e v a l u a t e d  by  a id  of  the i n t e r p o l a t i o n  f o r m u l a  (2 . 2 ) .  T h e  
r e s u l t s  then  a r e  o b t a i n e d  in the f o r m  of l i n e a r  c o m b i n a t i o n s  of the o r d i n a t e s  
f(Un). T h e  c o e f f i c i e n t s  depend  upon  the s t a t i o n  r)~ f o r  wh ich  m o s t  of the 
integrals 
used for 

1 

f 
0 

1 

J 
0 

1 

0 

1 

/ 
0 

h a v e  to be e v a l u a t e d .  T h e s e  s t a t i o n s  a r e  the  s a m e  s t a t i o n s  a s  
the  i n t e r p o l a t i o n .  T h e y  a r e  d e f i n e d  b y  e q . ( 2 .  11). T h e n  

m+1 f (G  ) "~ f(~') du' = - E bvn 
( ~  _ r7,)2 .:i 

m+l 
f(r~') dr/' : Z evn f(r/n) 

r/~ - ~' n=l 

m+l 

L Cvn f ( t / n )  
n=l * 

f(~')in l ~ - u'l d~' = 

> v= i ,  2 . . . . .  m + l  (3. I)  

m+l 
f(r/')drT' = Z dnf(Un). (3.2) 

n=l 

There exists also an interference with the surface at the other side of 
�9 tt the r o o t  s e c t i o n  U = 0. I t  w i l l  now be a s s u m e d  tha t  the " s e m i - s p a n s  of bo th  
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sides of the lifting surface are equal and that ~= 0 is a symmetry plane. 
It would be only a matter of simple arithmetics to extend the following 
theory to the case of different "semi-spans '' , but it is thought that this 
makes no sense if the vertical plane at the root section 0 = 0 is not at the 
same time introduced as boundary condition. This, however, would involve 
the whole interference problem of a cross-tail with formulae which are 
much more complicated but give no deeper insight. Therefore, we shall 
restrict ourselves in the following to the investigations of a swept-wing 
for which the present procedure has also advantages. The left wing gives 
rise to the following integrals 

o 
/ f(o') dr/' 
-l (O,, - r / ' )  2 

o 
f f (o ' )  dr/' 
-i O~ - 0' 

0 

f f (o ' ) In l r l v  - o ' [ d O '  
-1 

2m+2 h 

= -n=mE+2 bvn f(On) l 
2m+2 [ 

= ~ evn f(Un) ? 
n=m+2 / 

2m+2 / 

= n = s  cvnf(On)  9 

= 1, 2 . . . . .  m + l  1) ( 3 . 3 )  

The sections On with n from m+2 to 2m+2 are given by 

n 
On+m+ 1 : _ COS2@n, O n - 2m+3 

;r, n= 1,2 . . . . .  m + l .  ( 3 . 4 )  

For v=m+2 ..... 2m+2 the formulae are 

1 m+l 
/ f (o ' )  dr/' = - E bv_m_l,n+m+ 1 f(On) , 

n = l  o 
(~v - ~,)2 

2m+2 o f(~,) 
/ (U _U,)2 du '  : -  E b_m_l .n_m.  1 f(r/n) 

- 1  n=m+2 

with obvious results for the other formulae. 
The minus sign in the formulae with the coefficients bvn has been added 

in order to keep the same definition for these coefficients as in [2]. This 
notation differs from that in [ 1 ] in the sign of bvn if u ~ n; u, n=l, 2 ..... rn+l. 

By substitution of eqs.(2.2), (2.10) and (2.11) in the integrals, it is 
f o u n d  t h a t  f o r  z : ,n= 1, 2 . . . . .  m + l  

m ~/2 sin(2k+l)@' sin2@' d@' 
4 E s i n ( 2 k + l ) 0 n y  ( c ~  _ c_~s2--_~,)-- ~ bvn = 2m+3 x=o 

0 

m 3/2 sin(2k+ l)O' sin20' dO' 
4 E sin(2k+ l)O n f cos2Ov _ cos2@ ' evn = 2 m  + 3 x=0 - - -  

0 

4 m ~/2 
Cvn - 2m+3 x=0s sin(2X+l)enf sin(2X+1)@' sin28'inlcos2@v-COS20'[d0' 

0 

3/2 
m 

dn= 2m+34 x=0s sin(2k+l)8 n0 / sin(2k+1)8' sin 28' dS'. 
( 3 . 5 )  

1) In the case of different "semi-spans", ~Tv-~' would have to be replaced by ~v-5~7 ~ where g denotes the 
ratio of the semi-span of the left to that of the right surface. 
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and Cvn if n=m+2,...,2m+2 are obtained by Expressions for bvn, evn O' 
replacement of cos2Ov - cos 2 by cos2O~+ cos20 '. 

Further reduction of the expressions (3.5) leads to 

4 m { - ( 2 k + l ) I x }  = - -  E s i n ( 2 k +  1)0 n ( ' l )X 
b~n 2m+ 3 x:o cos 2ov 

4 m 
e - - -  E vn 2m + 3 x=o 

4 m 
- E Cvn 2m + 3 x=o 

2 ill 

dn 2m + 3 x=o 

For n=m+2,..., 

s i n ( 2 X + l ) 8  n {Ix_l - Ix+i} 

s in (2 ) t+ l )O  n { ( -1)k{ 1 2 \ 2 k + 3  2kll  1) In cos20v + 

+ 4 ( 2 X - 1 )  ( I x - I x - 2 )  + 4(2) t+3)  ( I x -  Ix§ 

sin(2k+l)Sn [(_l)XQ 1 i ) 
2k+3 2A-i I" 

2m+2 the results are 

(3 .6)  

4 
b - - -  

vn 2m + 3 IE sin(2A+l)Sn { (-i) x +(2k+l)jx ] 
X=0 cos 2 Ov 

2 m 

evn 2rn + 3 X--0 

4 111 
C - E vn 2m + 3 k=0 

sin(2k+ I ) 8  n {Jx-1 - Jx+l t 

1 ) In cos20v - 

i i )} 
4 ( 2 k - 1 )  ( J x - J x - 2 )  4(2X+3)  (Jx-Jx+2 " 

while the formula for dn is the same as for n=l,2 ..... m+l. 
The formulae for I x and Jx are as follows 

~12 _ , . ,  ~12 
Ix : i CoSt2~ + i)0' dO', Jx : f cos(2~. + i)8' 

0 COS2Ov - COS20 ' 0 OOS2Ov + cos20 T 

~(3.7) 

d@'. (3.8) 

The integral Ix, which can also be written as 

?[ 

Ix = f cos(X+�89 cos @v - cos O' de', @v = 2Or, 
0 

d i f f e r s  f r o m  the w e l l - k n o w n  G l a u e r t ' s  i n t e g r a l  [6, p. 173] by  the r e p l a c e -  
m e n t  of X by X + �89 wi th  )t i n t e g e r .  T h e  i n t e g r a l s  I 0 and  J0 a r e  e v a l u a t e d  
by  p u t t i n g  

tan @v = zv and tan 8' = z' 

with the result that 

1 - sin @v 1 1 + Cosh ~v 
1 In , J0 = in , ~ (3.9) I0 - sin 8 v cos 8 v Cosh ~v Sinh~v 

where Sinh ~v = cos @v. 
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S i n c e  I _ i = I  0 a n d  J = J 0 ,  t h e  o t h e r  I x a n d  J x  a r e  d e t e r m i n e d  b y  the  r e -  
c u r r e n c e  r e l a t i o n s  ()~1 i n t e g e r )  

I X+l + I k-i = 

Jx+l + Jx-i = 

4 } 
2 k + l  ( - l ) X +  2 I x c ~  2 O r '  

4 ( - 1 )  x - 2J  x C o s h  2~ v 
2 k +  1 

(3 .  t o )  

I t  c a n  b e  s h o w n  f r o m  the  c h a r a c t e r i s t i c  e q u a t i o n ,  t h a t  t h e  r e c u r r e n c e  
r e l a t i o n  f o r  Ix  i s  s t a b l e ,  b u t  t h a t  t h e  r e l a t i o n  f o r  Jx  i s  u n s t a b l e .  H o w  t h e  
l a t t e r  d i f f i c u l t y  i s  to  b e  c i r c u m v e n t e d ,  w i l l  b e  d e a l t  w i t h  i n  S e c .  5. 

4.  The integral equation for the pressure difference. 

According to ref. [I] and [ 2], the integral equation for the dimensionless 
pressure difference 

Pl  - P u  
ACp - 

1 ~pU 2 

is in incompressible flow 

I s xt(y') ACp(X',y') I x-x' ] 
a ( x , y )  - 8~" / f  _ y , ) 2  i + 

-s xgy ' )  (y  ~/(x - x ' )  2 + ( y  _ y , ) 2  
d x ' d y ' .  ( 4 . 1 )  

x and x' are coordinates in chordwise direction, y and y' in spanwise 
direction, s is the semi-span, xl(y' ) denotes the x-coordinate of the leading 
edge, xt(y' ) that of the trailing edge, Pl is the pressure at the lower side, 
Pu that at the upper side, p is the air density and U the speed. 

The following symbols will also be used 

l ( y ' )  = x t ( y '  ) - x l ( y ' ) ,  X '  : 
x ' -  x l ( y '  ) 

l(y') 

x - x l ( y '  ) x - x i ( y  ) 
X - , X a - 

l(y') l(y) 

} y - y '  
y - 

l(y) 

( 4 . 2 )  

T h e  
F o r  

s e r i e s  

quantities X' and X a vary between 0 and i. This does not hold for X. 
the pressure difference in chordwise direction we assume a Birnbaum 
with coefficients depending on the spanwise coordinate. Hence 

4s R 
A % ( x ' , y ' )  - i ( ~ ' )  ~ a r ( ~ ' )  h r ( X ' ) ,  

r=0 

where ho(X' ) = cot ~ , hr(X' ) = sin r 9 if r 11> i, >- ( 4 . 3 )  

x '  : i - c o s ~  7' : y ' / s  l ( ~ ' )  : l ( y ' )  
J 

A f t e r  s o m e  r e d u c t i o n s  w h i c h  a r e  a n a l o g o u s  to  t h o s e  p e r f o r m e d  i n  r e f .  [ 2 ] ,  
a n d  w h i c h  a r e  a l s o  d e s c r i b e d  in  m o r e  d e t a i l  i n  r e f .  [ 7 ] ,  t h e  i n t e g r a l  e q u a t i o n  
c a n  b e  w r i t t e n  in  t he  f o r m  
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1 R ( 1 a r ( ~ ' ) f l r ( ~ , r L ~ l ' )  1 

r:o (4 (~ -~1') -I 

1 . X' " 
where flr(~,~,~') = y hr(X' ) ~l + -- X-X'____.:)dX, + 

o 

s 2 /dhr\ 
+ ~ (----:") (~ - ,7 ' f  Znlo-o'l 

{I(~)} \ d X / X = X a  

s 2 / d h r \  
f2r(g, )- , = X ( y , ) ,  7 = y / s .  

{1(7)[ \ d X / x = x a  

( 4 . 4 )  

For the integration over the left surface (-i < 7' < 0), i(~) has to be 
replaced by 1(7) in the formulae for flr (~, 7, ~') and f2r (~, ~), where i(7) 
denotes the imaginary chord obtained at the section 7 when the left wing 
is analytically continued up to this section (see ref. [7] for details). 

5. Solution of the integral equation. 

As we have restricted the freedom of Acp(x',y') by approximating it by 
the series of R+I terms given in eq. (4.3), it is only possible to satisfy 
eq.(4.4) for the R+I values of x, defined by 

x~ = x I + ~ 1 - cos 2R+3/ ' " = 1,2 ..... R+I. (5.1) 

Similarly, since the functions ar(~' ) will be approximated by interpolation 
formulae of the type given by (2.2), corresponding to a Fourier series of 
m+l terms according to (2. i0), the integral equation (4.4) can be satisfied 
only for m+l values of y at each semi-wing. These values of y are given 
by eq. (2. ii) for the right semi-wing and by eq. (3.4) for the left semi-wing. 

In this way there have been defined (m+l)(R+l)pivotal points (xa,Yv) at 
which eq. (4.4)will be satisfied. The integral equation is then replaced by 
the set of algebraic equations 

R 2m+2 "~ 
1 {bvnflr (~,Tv,Tn) - Cvn f2r(~p,Tv) } ar(~ ) 

tz= 1 , 2 , . . . , R + 1  ; u =  1 , 2  . . . . .  m + l .  
(5.2) 

The quantities flr(~ , 7v, ~n) are evaluated for r ~ 1 after integration by 
parts, see [7]. 

In the calculation of the coefficients bun and Cvn for n=m+2 .... ,2m+2 
there is a complication due to the instability in the evaluation by recurrence 
of the quantities Jx- Since the characteristic equation of the second eq. (3. I0) 
is 

t2+ 2t Cosh 2~v + 1 = 0, 

it follows that the dominant term in the error increases as (-l)Pe 2~vp , where 
p is the number of times the recurrence relation has been applied. Since 
the accuracy of the Telefunken TR4, on which the calculations have been 
performed, is II digits in floating form, a loss of 7 digits was considered 
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to be the limit which could be accepted. Hence, the recurrence relation 
is only used if 

e 2~(m+l) < i0 7 (5. 3) 

and then bvn and C~n follow from eq. (3.7). Eq. (5.3) will not be satisfied 
if either };v or m is large enough. ~v large implies @v small and ~?v far 
from the section ~} = 0, which means that the singularity at ~' =~v is far  
outside the interval of integration, m large means that a large number of 
points is used for the spanwise integration. In both cases it is admitted 
to neglect the singularity outside the interval of integration and to use 
eq.(3.2) for the integration. Then 

b vii -- 

d~ 

(n~ -r 2 
, Cvn : d n l n l ~ / v  - r / n [ ,  n=m+2, . . . ,  2m+2 

w h e r e  d n i s  g i v e n  b y  e q .  ( 3 . 6 ) .  
E q .  ( 5 . 2 )  h a s  b e e n  s o l v e d  f o r  ar(~]n) a n d  f r o m  t h e s e  r e s u l t s  t he  s e c t i o n a l  

l i f t  a n d  m o m e n t  a s  w e l l  a s  t h e  t o t a l  l i f t  a n d  c e n t r e  of  p r e s s u r e  w e r e  c a l -  
c u l a t e d  w i t h  f o r m u l a e  g i v e n  i n  [ 7 ] .  H o w e v e r ,  i t  a p p e a r e d  t h a t  c o n v e r g e n c e  
w i t h  i n c r e a s i n g  m w a s  r a t h e r  s l o w ,  e s p e c i a l l y  i f  R w a s  2 o r  m o r e .  T h i s  
i s  d u e  to  t h e  i n a c c u r a c y  of  t h e  s p a n w i s e  i n t e g r a t i o n .  T h e  r e s u l t s  f o r  t h e  
t o t a l  l i f t  o f  a f l a t  w i n g  w i t h  a =  1 a n d  of  t h e  r e s u l t a n t  c e n t e r  of  p r e s s u r e  
of  t h a t  w i n g  a r e  g i v e n  i n  t a b l e  2 f o r  v a r i o u s  m a n d  R .  T h e  w i n g  i s  t h e  
s a m e  a s  t h a t  c o n s i d e r e d  b y  M u l t h o p p  [ 1 ,  p a g e  6 7 ] .  

TABLE 2. Results obtained frol'n eq.(5.2) 

bCL Slope of life curve, b----~-. 

R+I ~.~ 

3.2589 
3.3272 
3.3423 
3.3094 

12 

3.2639 
3.2967 
3.3318 
3.3242 

16 

3.2647 
3.2914 
3.3137 
3.3242 

20 

3.2650 
3.2926 
3.3020 
3.3182 

24 

3.2652 
3.2940 
3.2965 

Position of the resultant centre of pressure given as fraction of the r o o t  

chord. 

R+li~ 

0. 8267 
0.8176 
0. 8184 

12 

0.8305 
0.8239 
0.8204 

16 

0.8301 
0.8278 
0.8230 

20 

0.8294 
0.8295 
0.8254 

24 

0.8290 
0.8299 

The slow convergence is not specific for the integration rules used in 
this paper, since they have also been encountered at the NLR in Amster- 
dam by Zandbergen and his group, using the Multhopp distribution of pivotal 
points in spanwise direction. They also occur for non-swept wings including 
the rectangular wing. 

In order to overcome these difficulties it has been proposed by Zand- 
bergen [8] to expand flr (~,~,~') near ~' =~ in the Taylor series 
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8 f l r  
f l r ( ~ , r / ,  r / ' )  : f l r  (~ , r / , r / )  + (r/' - r / )  a---n-T-(~,r/, r/) + R l r ( ~ , r / , r / ' ) ,  (5.4) 

where :Rlr (r  contains a factor (~'-7) 2. The integral equation then 
assumes the form 

IR{ 
o~(~,n) = -~-# r Eo f z r ( ~ , r / , n )  

1 ar(U' ) / a f l r ( ~ , r l , r / ' ) \  i ar (U' )  
/ (). J 
-I (l]-r/' \ afT' '=r# -1 r/'-~7 

- -  dr/' 

1 ar (U ' )Rl r  (~, rl, U' ) 1 
] dr/' + f 2 r ( ~ , r / )  / ar( r / ' ) ln  r l - r l '  dr/' 
- i  ( r / -  n ') ~ -I 

(5.5) 

Accepting the expansion of ar(ri' ) in a Fourier series of m+l terms, the 
integrals 

1 ar (r l ' )  1 ar(rl, ) 1 
f d r / ' ,  t dry and 7 ar(r/')lnl ~-~ '  Ida ;  
-1 ( r / - r l ' )  2 -1 rl '-r/ -1 

can be calculated exactly. The remaining integral has an integrand which 
is finite for ~'=~ unless r/= 0. Zandbergen suggested to calculate this integral 
by aid of an increased number of points. In the present investigation this 
integral has been calculated by aid of eq. (3.2). It is thought that the error 
thus made in the evaluation of the integral is of the same order as that 
made by restricting the Fourier series of ar(~' ) to m+l terms. 

The main advantage of eq. (5.5) over eq. (4.4) can be explained as follows. 
The accuracy of the first formula of eq. (3. I) is not too good (unless f(r/') 
consists of a m+l term Fourier series, in which case it is exact), since 
b~v is rather large positive while b~,~_i and b v v+l are negative in such a 
way that these three terms cancel each other fo} an important part. There- 
fore, the factor flr(~,r/,r/') occurring in eq.(4.4) after the integralsign 
gives errors, additional to and dominating those of the corresponding term 
in eq. (5.5). 

The set of algebraic equations used is 

a ( ~ ' r / v ) =  r=OE n=lE b v n f l r ( ~ ' r / v ' r / v )  + evn "'-an' 

- d n 
Rlr ( ~ ,  %, nn) 

- e w f z ~ ( ~ , % ) l  a~(nn)" (s. 6) 

The coefficients bvn, Cvn, eva 
(3.7), but (3.7) again with the 
we have instead 

and d n are obtained from eqs. (3.6) and 
restriction that if (5.3) is not satisfied, 

dn d n 
bvn = - , evn - , C~n = d n l n l u v - ~ n ] ,  

(r/v - t in )  2 ~v - ~ n  
n=m+2 ,  . . . ,  2m+2.  

The results obtained from eq. (5.6) for the total lift and centre of pres- 
sure of the same wing as considered before, are given in table 3. By 
comparison with table 2 it is seen that the convergence with increasing 
m is much better when using eq.(5.6). 
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TABLE 3. Final, more accurate, results obtained from eq.(5.6) 

5c L Slope of lift curve, ~-~-. 

R+I~ 

3.2661 

3.3000 

3.2856 

3.2689 

12 

3.2658 

3.2967 

3.2977 

3.2863 

16 

3. 2657 
3.2958 
3.2987 
3.2946 

20 

3.2656 

3.2957 

3.2977 

3.2977 

24 

3.2656 

3.2956 

3.2969 

Position of the resultant centre of pressure given as fraction of the root 
chord. 

x"-.•+_1 
R+I~ 

0.8273 

0.8277 

0.8310 

12 

O. 8284 
0. 8271 
0. 8283 

16 

0.8286 

0.8277 

0.8275 

20 

O. 8286 
O. 8282 
0.8275 

24 

0.8286 
0.8285 

Results obtained by Multhopp [1] ,  15 stations on total span 

1 chordwise station 6CL/6a = 3. 232 
2 chordwise stations 6CL/6Cr = 3.275, while the centre of pressure is at 
0.829 of the root chord. 

Another property of the result is that increase of R always should be 
accompanied by increase of m if an improvement of the results is aimed 
at. The expansion of ar(~') in a series of m+l terms becomes apparently 
more difficult for increasing r. This can be made plausible for a reef- 
angular wing where the higher terms in the Birnbaum series are more 
concentrated near the tips. 

For the details of the calculations the reader is referred to [7]. 
Finally, it may be mentioned that the evaluation of 

(% -nn)  2 

f o r  rTn = ~ ,  o c c u r r i n g  i n  e q . ( 5 . 6 ) ,  i s  o n l y  p o s s i b l e  i f  t h e r e  a r e  n o  k i n k s  
i n  t h e  l e a d i n g  o r  t r a i l i n g  e d g e  a t  a n y  o f  t h e  s p a n w i s e  s e c t i o n s  r/n. S i n c e  
i n  t h e  p r e s e n t  p r o c e d u r e  a l l  i n t e g r a t i o n s  a r e  p e r f o r m e d  s e p a r a t e l y  o v e r  
b o t h  s e m i - w i n g s ,  t h e  m i d d l e  s e c t i o n  w h e r e  s u c h  a k i n k  o f t e n  o c c u r s ,  i s  
not one of the sections rTn. This is another advantage over the classical 
methods of [i] and [2], where the introduction of the Taylor series (5.4) 
gives complications. 

6. R e s u l t s .  

Numerical computations have been performed for a number of flat wings. 
We present here the results for a wing, which has also been investigated 
by Multhopp [I]. It is shown in fig. l. Leading and trailing edges are 
straight for each semi-wing. The angle of sweep of the leading edge is 45 ~ . 
The aspect ratio is 4. The wing is tapered with a root chord I(0) = 0.7 s 
and a tip chord i(I) = 0.3 s. 
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Leading edge 

root chord 

center of pressure fine 

resul.tant center of 
pr e ssu r e 

traiting edge / ~ I tip chord 

Fig. 1. Wing planform and positions of center of pressure. 

The number of pivotal points in spanwise direction varied from re+l=8 
to 24, while that in chordwise direction varied from R+I=I to 5. These 
numbers are only limited by the number of fast memory cells available in 
the computer. The computer used was the Telefunken TR4 of the University 
of Groningen. 

There is an Algol 60 program available, see [7], which calculates and 
prints the following quantities for a symmetrically loaded wing. 

(i) the spanwise sections ~v,v-~l,2 ..... m+l. 
(it) the f u n c t i o n s  a r ( ~ ) ,  r = 0 , 1  . . . . .  R; v = l , 2  . . . . .  m + l .  
(iii) the  s p a n w i s e  l i f t  d i s t r i b u t i o n  
(iv) the p o s i t i o n  of the  s e c t i o n a l  c e n t r e  of p r e s s u r e  
(v) the l i f t  c o e f f i c i e n t  of the who le  wing  
(vi) the  p o s i t i o n  of the r e s u l t a n t  c e n t r e  of  p r e s s u r e  
(vii)  the s p a n w i s e  d i s t r i b u t i o n  of the i n d u c e d  d r a g  
(vi i i )  the t o t a l  i n d u c e d  d r a g  o b t a i n e d  b y  i n t e g r a t i o n  of (vii) 
(ix) the t o t a l  i n d u c e d  d r a g  o b t a i n e d  f r o m  the w a k e .  

T h e  s p a n w i s e  l i f t  d i s t r i b u t i o n  and  the s p a n w i s e  d i s t r i b u t i o n  of i n d u c e d  
d r a g  h a v e  b e e n  g i v e n  in f i g s .  2 and 3, r e s p e c t i v e l y .  T h e  p o s i t i o n s  of the 
s e c t i o n a l  c e n t e r s  of p r e s s u r e  and of the r e s u l t a n t  c e n t e r  of p r e s s u r e  h a v e  
b e e n  a d d e d  in f ig .  1. F i n a l l y ,  f ig .  4 s h o w s  the f u n c t i o n s  ar(T/) f o r  the c a s e  
of m+1=20  s p a n w i s e  p o i n t s  and R + l = 4  c h o r d w i s e  p o i n t s .  

I t  i s  n e c e s s a r y t h a t  in t h e  m i d d l e  s e c t i o n  of a s w e p t  w ing  ao(~) d e c r e a s e s  
to z e r o  in o r d e r  to k e e p  the  d o w n w a s h  f in i t e  a t  the  f o r e m o s t  po in t  of the 
wing .  T h e  p r e s s u r e  in  the  m i d d l e  s e c t i o n  then  is  due to the c o m p o n e n t s  
a i ( ~ ) ,  a2(r~), e t c .  T h e  q u i c k  c h a n g e  of t h e s e  c o m p o n e n t s  is  d i f f i cu l t  to 
g r a s p  u n l e s s  m and R a r e  t a k e n  r a t h e r  l a r g e  and  th i s  i s  one of the r e a s o n s  
f o r  the s low  c o n v e r g e n c e  of the c o m p o n e n t s  a r (~)  when  m and R a r e  i n -  
creased. Fig. 4 is only valid for the number of pivotal points mentioned, 
but an analogous figure for other numbers ~ of points would be only slightly 
different. 

The decrease of ao(~) in the middle section of a swept wing implies the 
vanishing of the section force there. Hence, the sectional induced drag is 
large near the middle suction and even becomes negative for the outer 
sections of a swept wing (fig. 3). 
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Fig,3, Spanwise distribution of induced drag. 
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